Development of a Mimotope Vaccine Targeting the Staphylococcus aureus Quorum Sensing Pathway

نویسندگان

  • John P. O’Rourke
  • Seth M. Daly
  • Kathleen D. Triplett
  • David Peabody
  • Bryce Chackerian
  • Pamela R. Hall
چکیده

A major hurdle in vaccine development is the difficulty in identifying relevant target epitopes and then presenting them to the immune system in a context that mimics their native conformation. We have engineered novel virus-like-particle (VLP) technology that is able to display complex libraries of random peptide sequences on a surface-exposed loop in the coat protein without disruption of protein folding or VLP assembly. This technology allows us to use the same VLP particle for both affinity selection and immunization, integrating the power of epitope discovery and epitope mimicry of traditional phage display with the high immunogenicity of VLPs. Previously, we showed that using affinity selection with our VLP platform identifies linear epitopes of monoclonal antibodies and subsequent immunization generates the proper antibody response. To test if our technology could identify immunologic mimotopes, we used affinity selection on a monoclonal antibody (AP4-24H11) that recognizes the Staphylococcus aureus autoinducing peptide 4 (AIP4). AIP4 is a secreted eight amino acid, cyclized peptide produced from the S. aureus accessory gene regulator (agrIV) quorum-sensing operon. The agr system coordinates density dependent changes in gene expression, leading to the upregulation of a host of virulence factors, and passive transfer of AP4-24H11 protects against S. aureus agrIV-dependent pathogenicity. In this report, we identified a set of peptides displayed on VLPs that bound with high specificity to AP4-24H11. Importantly, similar to passive transfer with AP4-24H11, immunization with a subset of these VLPs protected against pathogenicity in a mouse model of S. aureus dermonecrosis. These data are proof of principle that by performing affinity selection on neutralizing antibodies, our VLP technology can identify peptide mimics of non-linear epitopes and that these mimotope based VLP vaccines provide protection against pathogens in relevant animal models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INHIBITORY EFFECT OF STEVIA AND ROSA EXTRACTS AGAINST BACTERIAL QUORUM SENSING

Background & Aims: Quorum Sensing is a mechanism by which orchestrate the expression of many genes in bacteria. Therefore, any interference with the system will inhibit bacterial infections. The principal purpose of the research was to evaluate the potential of anti-quorum sensing of Rosa damascena and Stevia rebaudiana against Staphylococcus aureus. Materials & Methods: Ten isolates of Staphy...

متن کامل

Targeting agr- and agr-Like Quorum Sensing Systems for Development of Common Therapeutics to Treat Multiple Gram-Positive Bacterial Infections

Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, in...

متن کامل

Targeting Staphylococcus aureus Quorum Sensing with Nonpeptidic Small Molecule Inhibitors

A series of 3-oxo-C12-HSL, tetramic acid, and tetronic acid analogues were synthesized to gain insights into the structural requirements for quorum sensing inhibition in Staphylococcus aureus. Compounds active against agr were noncompetitive inhibitors of the autoinducing peptide (AIP) activated AgrC receptor, by altering the activation efficacy of the cognate AIP-1. They appeared to act as neg...

متن کامل

Quorum Sensing in Microbial Virulence

Cell-to cell communication occurs via a signaling pathway referred to as quorum sensing. There are four main types of these systems according to the chemical nature of signal molecules used by microorganisms to elicit expression of target genes in response to environmental stimuli or need of microbial communities. Type I system acts by using acyl homoserine lactones as signals to trigger the ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014